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Differential flow induced chemical instability and Turing instability for Couette flow
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Technion–Israel Institute of Technology, 32000 Haifa, Israel
~Received 2 March 1998!

Conditions of differential flow induced chemical instability~DIFICI! are obtained for heterogeneous reac-
tions in a Couette flow reactor with diffusional supply of reactants. We describe a general method applicable
to the analysis of a surface reaction fed by diffusion and laminar advection that reduces the original three-
dimensional problem to a closed two-dimensional evolution equation containing a nonlocal Dirichlet to Neu-
mann operator. This procedure is applied to compute conditions of DIFICI and competing symmetry-breaking
instabilities for a bimolecular catalytic reaction and the Brusselator model.@S1063-651X~98!00310-9#

PACS number~s!: 47.20.Ky, 82.65.Jv, 05.70.Ln
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I. INTRODUCTION

A differential flow is a bulk flow in a mixture in which
two or more components move with different velocities
the reaction region@1#. A differential flow between the coun
teracting species of dynamical activator-inhibitor syst
may destabilize its homogeneous reference state through
differential flow induced chemical instability~DIFICI!. The
DIFICI was predicted theoretically@2# in one spatial dimen-
sion and verified experimentally in the Belouso
Zhabotinsky system@3#.

The primary role of diffusion in Turing instability is to
spatially disengage the counteracting species. A stan
system exhibiting Turing instability includes a slowly diffu
ing activator and a rapidly diffusing inhibitor@5#. The sym-
metry breaking occurs when the inhibitor diffusing aw
from active locations suppresses chemical activity in th
neighborhood. Differential flow of activator and inhibito
can destabilize a spatially homogeneous state of the sy
similarly to differential diffusivity in the case of Turing in
stability. The homogeneous steady state may be destabi
when the activator and the inhibitor are advected at differ
flow rates, regardless of which one is faster, so that one is
constrained by the requirement of a higher diffusive rate
the inhibitor characteristic to the classical Turing mech
nism.

The aim of our investigation is to establish DIFICI co
ditions for a realistic system where spatially homogene
states exist~before being broken! in spite of a prevalently
advective transport. A system of this kind cannot be o
dimensional, as the reaction zone must be homogeneo
accessible to mass transport. In a previous work@4# we have
shown that DIFICI may indeed occur in an autocatalytic
action on the equiaccessible surface of arotating disk. Here
we shall consider in more detail another suitable system
heterogeneous chemical reaction on arotating cylinder. The
advantage of this case is a simple flow pattern and a po
bility to follow a competition between the DIFICI and Tu
ing symmetry-breaking mechanism. Differential flow nea
cylinder, as well as near a disk, is possible due to differ
PRE 581063-651X/98/58~4!/4524~8!/$15.00
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adsorption rates and surface capacitances of different r
tants.

We consider Couette flow between two coaxial cylinde
with radii r 0 andr 1 (r 0,r 1), as shown in Fig. 1. The inne
cylinder is at rest and serves as a catalytic surface, while
reactants are supplied from the outer cylinder that rota
with angular velocityv ~an alternative configuration with a
stationary outer and rotating inner cylinder is equivalen!.
This system can be realized experimentally by making
outer surface porous or semipermeable.

The paper is organized as follows. In Sec. II we formula
a general problem of adsorption and reaction on an e
accessible surface with reactants supplied and products
moved by diffusion and advection and obtain an impli
stability condition dependent on atransport operatorthat
relates the deviation of the external flux to deviations
concentrations. The spectrum of the transport operato
computed in Sec. III for Couette flow. In Secs. IV and
conditions of DIFICI and competing instabilities are com
puted for a bimolecular catalytic reaction and for the Bru
elator model.

FIG. 1. Couette flow between two coaxial cylinders with radiir 0

and r 1 (r 0,r 1). The inner cylinder is at rest and serves as a ca
lytic surface; the outer cylinder rotates with angular velocityv.
4524 © 1998 The American Physical Society
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II. SURFACE REACTION

A. Balance equations

We consider a catalytic reaction on the surface of a c
inder, assumed to be sufficiently large in the direction of
rotation axis, so that the edge effects are negligible. T
reactants are advected by the ambient flow, assumed t
laminar. Equations on the surface include effects of adso
tion and surface reaction

g
]u j

]t*
5Gj* 1Rj* ,

whereu j are surface concentrations for different species,g is
the adsorption capacity per unit area,Rj* is the production
rate of thej th reactant in surface reactions~dependent, gen
erally, on concentrations of all adsorbed species!, andGj* is
the net adsorption rate. The net adsorption rates can be
pressed through the diffusional flux at the catalytic surfa

Gj* 5
D j*

x S ]cj*

]r * D ,

wherex is a geometric factor expressing the active surfa
area per unit nominal geometric area of the catalytic surf
andr * is the coordinate normal to the catalytic surface. A
suming adsorption equilibrium described by isothermsu j
5u j (c* ) yields a relation between surface concentratio
and bulk concentrations near the surface. Rescaling the r
tion rateRj* by a reaction rate coefficientk and time by the
reaction time scalek/g we obtain the nondimensional equ
tions on the catalytic surface

W
]c

]t
5P

]c

]r
1f~c!, ~1!

where cj5cj* /Cj* is the dimensionless bulk concentratio
near the catalytic surface andr 5r * / l is the nondimensiona
coordinate. The scalesCj* of the bulk concentrations and th
length scalel should be specified later. The matrixW with
elementsWjm5]u j /]cm is defined by adsorption isotherm
P is a diagonal matrix with the elementsPj j 5D jCj* /(x lk)
5djCj /p, wheredj5D j /D1 are rescaled diffusion coeffi
cients andp5x lk/(D1C1* ); Cj5Cj* /C1* is a scale ratio of
bulk concentrations.

The diffusional fluxG* is represented by alinear Dirich-
let to Neumann pseudodifferential operator]c/]r 5G(c).
The linear operatorG should be defined by solving the tran
port problem for the reactants supplied from the bulk.

B. Stationary states and stability

In a stationary state the transport rate can be expresse
qj

0(cj
e2cj

s), whereqj
0 is the mass transport coefficient,cj

e are
the feed concentrations, and constantsqj

0 should be defined
from the bulk problem. Thus the stationary concentrat
field cj

s of Eq. ~1! is defined by

D jCjqj
0~cj

e2cj
s!/p52 f j„u~cj

s!…. ~2!
l-
e
e
be
p-

x-

e
e
-

s
ac-

as

n

In order to study stability of the stationary solution, we co
sider small perturbationsc̃ j5cj2cj

s . Linearizing Eq.~1! we
obtain

W
] c̃

]t
5P

] c̃

]r
1Ac̃,

whereAjm5(] f j /]cm) andWjm are both computed atcj
0 .

We seek solutions of the perturbed problem in the for

c̃5(
k,n

s~k,n!e
lt1 inw1 ikz,

where z,f are the axial and angular coordinates andn
should be an integer to ensure single valuedness. The ei
valuesl dependent onk,n are obtained from the solvability
conditions

uWl2PG2Au50,
~3!

l22l tr T~k2,n!1det T~k2,n!50,

whereT(k2,n)5W21@A1PG(k2,n)# and the transport op
erator represented by the diagonal matrixGj j 5qj should be
determined from the bulk problem. Two different kinds
instabilities are possible: a Turing instability across the fl
with n50 and kÞ0 ~Secs. IV B and V B! and a DIFICI
instability along the flow withnÞ0 ~Secs. IV C and V C!.

III. SPECTRUM OF THE TRANSPORT OPERATOR

A. Convective diffusion equation

We compute the Fourier representation of the transp
operator, which depends on the transport in the bulk flow a
hence on the flow pattern. We consider convective diffus
in Couette flow between two coaxial cylinders with radiir 0
andr 1 (r 0,r 1), as it is shown in Fig. 1. The outer cylinde
rotates with the angular velocityv, while the inner one is at
rest and serves as a catalytic surface.

The flow is parallel and satisfies no-slip boundary con
tions on the both cylinders. Thus only the angular veloc
component differs from zero:Vw(r * )5vr 1(r * 2r 0)/(r 1
2r 0). Rescaling the coordinates by the gap between the
inders l 5r 12r 0 and introducing the dimensionless conce
trations and rescaled parameters defined above we write
convective diffusion equation

s
]cj

]t
1zr

]cj

]w
5djDcj ,

whereD is the Laplace operator in cylindrical coordinate
z5(v l 2/D1)(r 1 /r 0) is a modified Pe´clet number, and the
dimensionless parameters5k l 2/(gD1) is the ratio of the
diffusional and reaction time scales. We consider theslow
reaction limits!1 because all relevant effects become p
nounced in this case. The concentration scalesCj will be
specified later for specific reactions.

Since the species diffuse independently, we consider th
separately and omit indices in this section. The transp
equation is linear and the perturbation equation is the sa
for s→0 it is written as
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zr
] c̃

]w
5dD c̃.

We seek solutions of the form

c̃5ei ~nw1kz!R~r !,

where n is an integer. Restricting to the small gap limitl
!r 0 , we obtain the equation forR(r )

R92R~k21 inr z!/d50. ~4!

This equation will be solved further with different bounda
conditions on the outer cylinder to obtain the required tra
port operator.

B. Dirichlet boundary condition

First, we suppose that reactant is supplied from the o
cylinder, where the concentration is fixed:c* (r 1)5c* e. The
condition for perturbation on the outer cylinder is

c̃~1!50. ~5!

Consider homogeneous perturbations that leave the
face homogeneous, i.e., do not depend on angular and
coordinates (k5n50). In this situation Eqs.~4! and ~5!
have a simple solution

R5~12r !R0,

where the constantR05R(0) should be defined from th
conditions on the catalytic surface. Thus the mass trans
coefficient isq0521.

In the casekÞ0 andn50 ~which corresponds to Turing
instability! Eq. ~4! becomes

R92d2R50, ~6!

whered5kd21/2. The solution of Eq.~6! that satisfies the
boundary conditions~5! is

R~r !5
edr2ed~22r !

12e2d R0.

Thus, the spectral representation of the transport operat

q~k,0!5R8~0!52d coth d.

The solution of Eq.~4! for k50 andnÞ0 satisfying the
boundary condition~5! is expressed through Airy functions

R~r !5R032/3G~2/3!
Bi~c!Ai ~cr !2Ai ~c!Bi~cr !

Bi~c!2)Ai ~c!
,

where

c5~ inz/d!1/3. ~7!

This yields the spectral representation of the transport op
tor
-

er

ur-
ial

rt

is

a-

q~0,n!52sc
Bi~c!1)Ai ~c!

Bi~c!2)Ai ~c!
, ~8!

where

s531/3

GS 2

3D
GS 1

3D '0.729. ~9!

C. Neumann boundary condition

Alternatively, a Neumann~no-flux! boundary condition
arises when there is no external supply of the chemical s
cies. In the casek5n50, of course,q(0,0)50, but generally
qÞ0 at k,nÞ0.

At kÞ0, n50 we have

R~r !5
edr1ed~22r !

11e2d R0.

Thus

q~k,0!52k/Ad tanh~k/Ad!.

The solution of Eq.~4! for k50 and nÞ0, satisfying the
boundary condition~5!, is again expressed through Air
functions

R~r !5R032/3G~2/3!
Bi8~c!Ai ~cr !2Ai 8~c!Bi~cr !

Bi8~c!2)Ai 8~c!

and

q~0,n!52sc
Bi8~c!1)Ai 8~c!

Bi8~c!2)Ai 8~c!
, ~10!

wherec,s are defined by Eqs.~7! and ~9!.

IV. BIMOLECULAR REACTION

A. Stationary states

As a first example, consider a bimolecular surface re
tion of two species with the reaction rate expressions

f j* 52ku1u2 , j 51,2,

and the Langmuir adsorption isotherm

u j5
bjcj*

11b1c1* 1b2c2*
.

It is convenient to define the concentration scaleCj* as the
inverse capacitance factor of thej th reagentbj . Then the
surface reaction rate expressions become

f j52
c1c2

~11c11c2!2 .

For c2.c111 or c2,c121 one of the reactants is autocat
lytic, so balance equations on the catalytic surface may h
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multiple solutions. The solutions are spatially homogene
since the stationary flux does not depend on transverse c
dinates. The bifurcation conditions will be determined b
low.

Suppose that both reactants are supplied from the o
cylinder, i.e., the Dirichlet boundary conditions apply f
both species. Consider homogeneous perturbations that l
the surface homogeneous, i.e., do not depend on angula
axial coordinates (k5n50). In this situation transport op
erators for both species are the same andqj (0,0)521. The
condition for bifurcation of stationary states (l50) is

det T~0,0!5@c2
0~12c1

01c2
0!db1c1

0~11c1
02c2

0!

1db~11c1
01c2

0!3/p#/p50, ~11!

wherecj
0[cj

s(0) is the stationary concentration ofj species
at the catalytic surface,b5b1 /b2 , and d5D2 /D1 . After
straightforward calculations, Eq.~11! together with Eq.~2!
gives a family of cusped bifurcation loci in the (b,p) plane,

b~c1
0!5

c1
e2c1

0

dn
,

~12!

p~c1
0!5

~11c1
01c2

e2n!2~c1
e2c1

0!

c1
0~c2

e2n!
,

where

n~c1
0!52a16~a1

22a0!1/2,

a1~c1
0!5@2~c1

0!21c1
0~11c1

e2c2
e!

2c1
e~112c2

e!#/2~c1
01c1

e!, ~13!

a0~c1
0!5c2

e@2~c1
0!22c1

0c1
e1c1

e~11c2
e!#/~c1

01c1
e!,

and 0<c1
0<c1

e and d.0 are parameters. The bifurcatio
manifold shifts with the changing ratio of diffusion coeffi
cientsd of the two species, as shown in Fig. 2. Introducingd
as an additional coordinate, we can draw the bifurcat
manifold as a two-dimensional cusped surface in the p
metric space (d,p,b). The bifurcation surface consists o
two sheets joined at the cusp line. The boundaries of Tu
instability and DIFICI domains are represented on b
sheets as parametric curves. These curves divide the s

FIG. 2. Bimolecular reaction: bifurcation curves of stationa
states in the parametric plane (b,p) for different values ofd. Mul-
tiple stationary states exist within the cusped region.
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into stable and unstable domains. The sheets are situ
close to each other and have approximately the same q
tative picture of the instability domains. Thus we consid
only one of the sheets. In the following, we shall look f
bifurcations with spatial symmetry breaking on the low
sheet of the bifurcation surface, which is shown in Fig. 3

B. Turing instability

Turing instability is the result of axial perturbations wit
kÞ0 ~without angular perturbations,n50). Thus the bound-
ary of the Turing instability domain is defined by

l~0,0!50, ~14!

dl

d~k2!
~0,0!50. ~15!

The condition~14! is identical to the condition~11! and Eq.
~12! can be considered as an additional condition on
parameterd. Thus, instead of the independent parameterd,
one has to substitute the function obtained by solving
~15! in Eqs.~12!,

d~c1
0!511

~j11c1
0!c1

0

~c1
e2c1

0!~j12c1
0!

,

where

j1~c1
0!511c2

e2n~c1
0! ~16!

andn(c1
0) is defined by Eq.~13!. This defines the boundar

of the Turing instability domain, shown by curve 1 in Fig.
The Turing instability domain lies to the left of this curve

C. DIFICI

DIFICI results from growth of angular perturbations (n
Þ0). In the continuous limit~valid for a cylinder with the

FIG. 3. Bimolecular reaction: boundaries of the Turing instab
ity and DIFICI on the lower sheet of bifurcation surface. The Tu
ing instability is observed to the left of the curve 1 and DIFICI
the right of the curve 2.
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circumference much larger than the gap width!, the boundary
of the DIFICI instability domain is defined by

l~0,0!50,
dl r

d~n2!
~0,0!50. ~17!

As in the preceding subsection, the DIFICI domain is o
tained from Eqs.~12! by replacing the parameterd by the
following function obtained by resolving Eqs.~17!:

d~c1
0!5

1

2
@2K16~K 1

224K2K0!1/2#K 2
21 ,

where

K2~c1
0!5j2@2j2~j11c1

0!1n~11c1
0!j3

117/35nj3
2~c1

e2c1
0!#,

K1~c1
0!5nj3@~11c1

0!~12j2!1j2j1~c1
e2c1

0!

2j3~c1
e2c1

0!#22~j11c1
0!j2~12j2!,

K0~c1
0!5~12j2!@~j221!~j11c1

0!

1j1j3~c1
e2c1

0!117/35n~c1
e2c1

0!j3
2#,

j2~c1
0!52

~c1
e2c1

0!~j12c1
0!

c1
0~j11c1

0!
, j3~c1

0!5
c1

01c2
e2n

c1
0~c2

e2n!
,

and n(c1
0) is defined by Eqs.~13! and j1(c1

0) by Eq. ~16!.
The boundary of the DIFICI domain is shown by curve 2
Fig. 3. The DIFICI domain lies to the right of this curve
Thus, in the domain to the right of Turing curve there is
Turing instability, but there is the symmetry breaking caus
by DIFICI.

V. BRUSSELATOR MODEL

A. Stationary solution and stability

As a second example of a surface reaction conside
version of the Brusselator model. It can be formulated a
system of two chemical reactions

A1→
k1

A2 , 2A11A2→
k2

3A1 ,

with the following reaction rates defined according to t
mass action law:

R1,2* ~u1 ,u2!56u1~k12k2u2u1!.

Taking k1 as a reaction rate scale we obtain

f 1,2~u1 ,u2!56u1~12b̂u2u1!,

where b̂5k2 /k1 . Consider the Henry adsorption isother
u j5H jcj as a relation between the surface coverages
bulk concentrations of both species near the surface. In
caseW is the diagonal matrix with elementsWj j 5H j . Mul-
tiplying Eq. ~1! by the inverse matrixW21 from the left, we
obtain
-

d

a
a

d
is

]c1

]t
5

1

p

]c1

]r
2c11bhc2~c1!2,

]c2

]t
5

d

hp

]c2

]r
1

1

h
c12bc2~c1!2,

whereh5H2 /H1 , b5b̂H1
2, andp5 p̂H1 .

Suppose that one of the reactants is supplied from
outer cylinder~Dirichlet boundary condition!, while there is
no external input of the second one~Neumann boundary con
dition!. In this case the transport operators for the two s
cies will be different. The stationary homogeneous conc
tration field ~2! is defined by

c1
s51, c2

s51/~hb!.

Consider the situation without perturbations along a
around the inner cylinder, that is,k5n50. In this case the
components of the transport operator areq1521 for the
externally supplied species andq250 for the species withou
external flux. Thus, in Eq.~3!, we get

l r
22l i

22l r tr T1det T50,
~18!

l i~2l r2tr T!50,

where

tr T512b21/p, detT5b/p.

Since detT is strictly positive, the homogeneous model
50 is impossible. The Hopf bifurcation locus (p,b) is de-
fined by the condition

12b21/p50.

B. Turing instability

In this system both the Turing instability and DIFICI oc
cur at nonzero values ofk or n. At n50 the components o
the transport operator areq1(k)52k cothk and q2(k)
52k/Ad tanh(k/Ad); the matrixT is real and we have the
same equations as Eqs.~18!. However, now we have

tr T~k!512b2
k

hp
@h coth k1Ad tanh~k/Ad!#,

det T~k!5
bk coth k

p
2

Ad

hp
k tanhS k

Ad
D

1
k2Ad

hp2 coth k tanhS k

Ad
D .

An example of the dependence of the eigenvalues onk fea-
turing a marginal Turing instability is shown in Fig. 4. Be
cause of the absence of a homogeneous instability, the
no long-wavelength instability in this case, contrary to t
first example. Now it is possible to have a short-wavelen
instability, which requires stability fork50 and instability
for somek5k* Þ0. The stability conditions fork50 are
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l r
~1!~0!1l r

~2!~0!5tr T~0!,0 ~19!

and

l~1!~0!l~2!~0!5det T~0!.0, ~20!

where the condition~20! is automatically satisfied becaus
detT(0)5b/p is obviously positive. If the condition~19! is
true, i.e., trT(0),0, then trT(k),0 for all k because
tr T(k) is a monotonically decreasing function. The Turin
instability occurs if for somek5k* one of eigenvalues be
comes equal to zero, that is,

l~1!~k* !l~2!~k* !5det T~k* !50. ~21!

We should add the condition thatl (1)(k* ) is the maximal
value. Differentiating Eqs.~18! with respect tok at k5k*
we obtain the conditions

S d

dk
det T~k! D

k*
50,

~22!

S d2

dk2 det T~k! D
k*

.0,

where detT(k) can be rewritten as

det T~k!5QH hb

Ad
cothS k

Ad
D 2tanhk1

k

p J ,

whereQ5(Ad/hp)k cothk tanh(k/Ad) is positive forkÞ0.
For the following calculationsQ can be omitted. Thus the
conditions~19!, ~21!, and~22! read

12b2
1

p
,0, ~23!

hb

Ad
cothS k*

Ad
D 2tanhk* 1

k*

p
50, ~24!

2
hb

d

1

sinh2~k* /Ad!
2

1

cosh2 k*
1

1

p
50, ~25!

2
hb

d3/2

cosh~k* /Ad!

sinh3~k* /Ad!
12

sinh k*

cosh3 k*
.0, ~26!

FIG. 4. Example of the dependence of the eigenvalues ok
featuring marginal Turing instability.
where condition~26! is always true (k* .0).
Equations~24! and~25! for all h,Ad can be rewritten as

a parametric curve in the plane (p,b):

p~k!5
cosh2 k@Ad sinh~2k/Ad!12k#

sinh~2k!1Ad sinh~2k/Ad!
,

b~k!5
d

h

sinh2~k/Ad!@sinh~2k!22k#

cosh2 k@Ad sinh~2k/Ad!12k#
,

which should be considered forb.(p21)/p because of the
condition ~23!. Turing instability curves forh50.2 and dif-
ferent values ofd from 0.01 up to 4.0 are shown in Fig. 5~a!.
Now the necessary conditionh,Ad becomes obvious: The
curve withd50.01 (h50.2.Ad50.1) always lies under the
Hopf curve. Consequently, for increasing value ofd the Tur-
ing instability occurs for smaller values ofp and b. An
analogous picture can be observed ford54 and different
values ofh from 0.2 up to 2.0. Turing instability occurs o
the parts of curves over the Hopf curve. Forh>2 there is no
Turing instability. For a decreasing value ofh we can ob-
serve Turing instability for smaller values ofp andb, as it is
shown in Fig. 5~b!.

C. DIFICI

DIFICI is the result of angular perturbation withnÞ0.
Consider pure angular perturbations, i.e., with no axial p
turbation. The transport operator is defined by Eq.~8! for the
first species and by Eq.~10! for the second one. We ar
interested in obtaining a situation where instability occurs
somenÞ0. The stability conditions forn50 are

FIG. 5. Brusselator model: Turing instability for~a! h50.2 and
different values ofd and~b! d54 and different values ofh. Insta-
bility occurs above the Hopf curve. The necessary instability c
dition is h,Ad.
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l r
~1!1l r

~2!5trr T,0, ~27!

l~1!l~2!5det T.0, ~28!

where detT5b/p, i.e., the condition~28! is automatically
true. DIFICI may occur when for somen* one of the eigen-
values becomes equal to zero, while the real part of the
ond one is negative. Thus, forn5n*

l r
~1!1l r

~2!5trr T,0, ~29!

l~1!l~2!5det T50. ~30!

The condition~29! may be excluded because the real part
tr T is a monotonically decreasing function ofn. An ex-
ample of the dependence of the eigenvalues onn is shown in
Fig. 6.

The conditions~27! and ~30! can be rewritten as a para
metric curve in the plane (p,b),

p~j!5s
jf2

r ~j!

f1
r ~j!f2

i ~j!2f1
i ~j!f2

r ~j!
,

b~j!5
d2/3

h

f1
r ~j!

f2
r ~j!

,

wherej5(nz)1/3 is the positive parameter and

f j~j!5S I2 j /3F2

3
Ai j3/dj G

I j /3F2

3
Ai j3/dj G D

~21! j

, j 51,2.

FIG. 6. Example of the dependence of the eigenvalues on
featuring DIFICI.
c-

f

Here I6 i /3(t) are modified Bessel functions of fractional o
der. The results of calculation are shown in Figs. 7 and
The dependence of the DIFICI curve on different values oh
is shown in Fig. 7. For smaller values ofh instability occurs
for smaller values ofb andp, while the dependence ofd is
quite opposite: Over the specified value ofd instability oc-
curs for all values ofb and p.1. For example, in cased
56 andh52, DIFICI is possible forp.1 andb.0, while
Turing instability is possible only forp.p* , where p*
'26 andb.1.

VI. CONCLUSION

The Couette flow reactor gives a unique opportunity
follow competition among DIFICI, Turing instability, and
Hopf instability on an equiaccessible reaction surface.
both examples considered, a bimolecular catalytic reac
and the Brusselator model, we have obtained conditions
both kinds of symmetry-breaking instabilities, DIFICI an
Turing instability, which fall into different parametric re
gions but may also interact at a higher codimension bifur
tion locus.

A clear identification of various mechanisms of spontan
ous symmetry breaking is possible only in a system poss
ing the involved symmetries to begin with, which may b
difficult to realize experimentally. The original setup for D
FICI instability @2# was a one-dimensional reactor whe
translational symmetry was lacking from the outset, due
the existence of a preferred direction of the reactant sup
that makes a uniform stationary state impossible for a
neric ~realistic! reaction system. This restriction also appli

FIG. 7. Brusselator model: DIFICI curve for different values
d.

FIG. 8. Brusselator model: competition between Turing insta
ity and DIFICI for h52, d56.
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to the study of competition between the DIFICI in the dire
tion of flow and a Turing instability in the transverse dire
tion by Ponce Dawsonet al. @6#.

In the Couette flow reactor with diffusional supply of r
actants analyzed in this paper, the symmetry of a unifo
state may be broken by either DIFICI in the azimuthal
Turing instability in the axial direction. DIFICI is caused i
this configuration by a disparity of adsorption rates of diffe
ent reactants and is due essentially to a chromatographi
fect. A more convenient way to supply reactants might
through axial flow. This, however, would break the symm
try along the axis. DIFICI in the azimuthal direction wou
still be possible in this configuration, but the state of brok
symmetry would then branch off a spatially nonuniform b
sic state and DIFICI may be observed only in a part of
reactor.

We have given above a general recipe for the analysi
a surface reaction fed by diffusion and laminar advecti
The procedure effectively separates the linear part of
problem by resolving the applicable partial differential equ
tion in Fourier space and reducing the original thre
dimensional problem to a closed two-dimensional evolut
equation containing a nonlocal Dirichlet to Neumann ope
tor. Once this operator is computed, the stability analysis
an arbitrary reaction scheme can be carried out in a stan
way, although the actual computation of bifurcation loci m
J.
-

r

-
ef-
e
-

n
-
e

of
.
e
-
-
n
-
f
rd

remain technically involved for rather trivial reasons, such
the necessity to solve cumbersome algebraic equations
possess multiple stationary states. In order to simplify al
bra, full analysis has been carried out above for the artific
Brusselator system, while for a more realistic bimolecu
system the existence of symmetry-breaking bifurcation w
proved on the saddle-node bifurcation manifold. Althou
the wavelength of the bifurcating pattern is infinite on t
intersection of the DIFICI or Turing instability and saddl
node bifurcation manifolds depicted in Fig. 3, the existen
of broken-symmetry states with a large but finite wavelen
in the vicinity of this intersection follows by continuity. Thi
is supported by preliminary results of our numerical comp
tations. The numerics is greatly facilitated by dimension
reduction with the help of a nonlocal operator. The comp
tation of finite amplitude patterns based using the appro
will be described elsewhere.
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