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Differential flow induced chemical instability and Turing instability for Couette flow
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Conditions of differential flow induced chemical instabiliIFICI) are obtained for heterogeneous reac-
tions in a Couette flow reactor with diffusional supply of reactants. We describe a general method applicable
to the analysis of a surface reaction fed by diffusion and laminar advection that reduces the original three-
dimensional problem to a closed two-dimensional evolution equation containing a nonlocal Dirichlet to Neu-
mann operator. This procedure is applied to compute conditions of DIFICI and competing symmetry-breaking
instabilities for a bimolecular catalytic reaction and the Brusselator mp82063-651X98)00310-9

PACS numbegp): 47.20.Ky, 82.65.Jv, 05.70.Ln

[. INTRODUCTION adsorption rates and surface capacitances of different reac-
tants.
A differential flowis a bulk flow in a mixture in which We consider Couette flow between two coaxial cylinders

two or more components move with different velocities inwith radiiro andr, (ro<r,), as shown in Fig. 1. The inner
the reaction regiofil]. A differential flow between the coun- cylinder is at rest and serves as a catalytic surface, while the
teracting species of dynamical activator-inhibitor systemfeéactants are supplied from the outer cylinder that rotates
may destabilize its homogeneous reference state through t¥éth angular velocityw (an alternative configuration with a
differential flow induced chemical instabiligDIFICI). The  Stationary outer and rotating inner cylinder is equivalent
DIFICI was predicted theoreticall}2] in one spatial dimen- This system can be realized experimentally by making the
sion and verified experimentally in the Belousov- Outer surface porous or semipermeable.

Zhabotinsky systeri3]. The paper is organized as fqllows. In Sec._ll we formulate_

The primary role of diffusion in Turing instability is to @ general problem of adsorption and reaction on an equi-
spatially disengage the counteracting species. A standa@gcessible surface with reactants supplied and products re-
system exhibiting Turing instability includes a slowly diffus- moved by diffusion and advection and obtain an implicit
ing activator and a rapidly diffusing inhibitdb]. The sym-  Stability condition dependent on taansport operatorthat
metry breaking occurs when the inhibitor diffusing away relates the_ deviation of the external flux to deviations of
from active locations suppresses chemical activity in thej€oncentrations. The spectrum of the transport operator is
neighborhood. Differential flow of activator and inhibitor computed in Sec. lll for Couette flow. In Secs. IV and V
can destabilize a spatially homogeneous state of the systef@nditions of DIFICI and competing instabilities are com-
similarly to differential diffusivity in the case of Turing in- Puted for a bimolecular catalytic reaction and for the Bruss-
stability. The homogeneous steady state may be destabiliz&dator model.
when the activator and the inhibitor are advected at different
flow rates, regardless of which one is faster, so that one is not ) A = 5
constrained by the requirement of a higher diffusive rate of Q}‘;tfl:cee <r0» """ >
the inhibitor characteristic to the classical Turing mecha- - : :
nism.

The aim of our investigation is to establish DIFICI con-
ditions for a realistic system where spatially homogeneous
states exist{before being brokenin spite of a prevalently
advective transport. A system of this kind cannot be one
dimensional, as the reaction zone must be homogeneously
accessible to mass transport. In a previous Wdikve have
shown that DIFICI may indeed occur in an autocatalytic re- :
action on the equiaccessible surface abtating disk Here RSN P
we shall consider in more detail another suitable system: a f
heterogeneous chemical reaction orotating cylinder The ~——
advantage of this case is a simple flow pattern and a possi-
bility to follow a competition between the DIFICI and Tur-  FIG. 1. Couette flow between two coaxial cylinders with ragii
ing symmetry-breaking mechanism. Differential flow near aandr, (ro<r,). The inner cylinder is at rest and serves as a cata-
cylinder, as well as near a disk, is possible due to differentytic surface; the outer cylinder rotates with angular veloeity

Supply of
* reactants

3
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Il. SURFACE REACTION In order to study stability of the stationary solution, we con-

A. Balance equations sider small perturbatior% =c;j—c;. Linearizing Eq.(1) we

. : . obtain
We consider a catalytic reaction on the surface of a cyl-

inder, assumed to be sufficiently large in the direction of the s Je
rotation axis, so that the edge effects are negligible. The W —=P —+Ac,
reactants are advected by the ambient flow, assumed to be
laminar. Equations on the surface include effects of adsorp\;v

tion and surface reaction hereA;,= (df;/dcy,) andW;,, are both computed ED‘]O

We seek solutions of the perturbed problem in the form
a0,
F=gr+R",

yﬁt_* E:E S(k'n)e)\tJrin:erikz,
k,n

whered; are surface concentrations for different speciels, |\ here 2,6 are the axial and angular coordinates amd

the adsorption capacity per unit aré®, is the production  ghould be an integer to ensure single valuedness. The eigen-
rate of thejth reactant in surface reactiofgependent, gen- yajues\ dependent ofk,n are obtained from the solvability
erally, on concentrations of all adsorbed speciaadg; is  conditions

the net adsorption rate. The net adsorption rates can be ex-

pressed through the diffusional flux at the catalytic surface |[W\N—PG—-A|=0,
2 2 2 (3)
D]* ((90}*) A=\ tr T(k%,n)+detT(ks,n)=0,
e . —
box ot whereT(k?,n)=W A+ PG(k? n)] and the transport op-

. . . . erator represented by the diagonal matix=q; should be
where x is a geometric factor expressing the active surfacejetermined from the bulk problem. Two different kinds of
area per unit nominal geometric area of the catalytic surfacéstabilities are possible: a Turing instability across the flow
andr* is the coordinate normal to the catalytic surface. As-with n=0 andk#0 (Secs. IVB and V B and a DIFICI
suming adsorption equilibrium described by isotherfl}s instability along the flow witm+0 (Secs. IVC and V @
=0;(c*) yields a relation between surface concentrations
and bulk concentrations near the surface. Rescaling the reac- |;; spECTRUM OF THE TRANSPORT OPERATOR
tion rateR}" by a reaction rate coefficient and time by the S _
reaction time scal&/y we obtain the nondimensional equa- A. Convective diffusion equation

tions on the catalytic surface We compute the Fourier representation of the transport
operator, which depends on the transport in the bulk flow and
d ac hence on the flow pattern. We consider convective diffusion
W 9 P ar +1(0), (1) in Couette flow between two coaxial cylinders with radji
andr, (ro<r,), as itis shown in Fig. 1. The outer cylinder

. . . . rotates with the angular velocity, while the inner one is at
where c;=c’/C* is the dimensionless bulk concentration 2
L rest and serves as a catalytic surface.

near t_he catalytic surfa*ce ame-r*/1 is the nond_imensional The flow is parallel and satisfies no-slip boundary condi-
coordinate. The scalés;’ of thg_bulk concentratlon_s an_d the tions on the both cylinders. Thus only the angular velocity
length scald should be specified later. The mati¥ with component differs from zeroV,(r*)=wr(r* —ro)/(ry

Yo

elementsiy, = d6;/Jcy, is defined by adsorption isotherms. _ y "Rescaling the coordinates by the gap between the cyl-
P is a diagonal matrix with the elemeni;=D;C{"/(x1«)  indersl=r,—r, and introducing the dimensionless concen-
=d;C;/p, whered;=D, /D, are rescaled diffusion coeffi- {rations and rescaled parameters defined above we write the
cients andp= x| «/(D,CY); C;=Cj/C] s a scale ratio of convective diffusion equation

bulk concentrations.

The diffusional fluxG* is represented by knear Dirich- JC; JC;
let to Neumann pseudodifferential operatat/or = G(c). oo T 9o djAcy,
The linear operatoG should be defined by solving the trans-
port problem for the reactants supplied from the bulk. where A is the Laplace operator in cylindrical coordinates,

{=(wl?/Dy)(r,/ro) is a modified Pelet number, and the

dimensionless parameter=«l1?/(yD;) is the ratio of the

. diffusional and reaction time scales. We consider shmv

o In a stationary state the transport rate can be expressed ggaction limito<1 because all relevant effects become pro-

q;j(cf—cj), whereq; is the mass transport coefficieof,are  nounced in this case. The concentration scaeswill be

the feed concentrations, and constaqﬁsshould be defined specified later for specific reactions.

from the bulk problem. Thus the stationary concentration Since the species diffuse independently, we consider them

field ch of EqQ. (1) is defined by separately and omit indices in this section. The transport
equation is linear and the perturbation equation is the same;

D;C;ap(c;—c)/p=—f;(6(c)). (2 for ¢—0 it is written as

B. Stationary states and stability



4526 Y. BALINSKY AND L. M. PISMEN PRE 58

Jc ~ Bi(¢)+v3Ai
r—=dAc. q(0n)=—sy M (8)
de Bi( ) —vV3Ai(y)
We seek solutions of the form where
“— Qi(net+kz) 2
c=¢'\"? R(r), F(—)
wheren is an integer. Restricting to the small gap linit 5=3' ERY ~0.729. ©)
<ry, We obtain the equation fdr(r) F(§)

R'—R(k?+inr{)/d=0. 4 C. Neumann boundary condition

This equation will be solved further with different boundary ~ Alternatively, a Neumanr{no-flux) boundary condition

conditions on the outer cylinder to obtain the required trans@fises when there is no external supply of the chemical spe-

port operator. cies. In the cask=n=0, of courseq(0,0)=0, but generally
g#0 atk,n+#0.

B. Dirichlet boundary condition At k#0,n=0 we have

First, we suppose that reactant is supplied from the outer R(r) = e’ +e’27") RO
cylinder, where the concentration is fixeaf:(r;) =c*€. The (n= 1+e%? '

condition for perturbation on the outer cylinder is
_ Thus
c(1)=0. (5

q(k,0)=—k/+/d tani(k/\/d).
Consider homogeneous perturbations that leave the sur-
face homogeneous, i.e., do not depend on angular and axiah€ solution of Eq.(4) for k=0 andn#0, satisfying the
coordinates K=n=0). In this situation Eqgs(4) and (5) boun_dary condition(5), is again expressed through Airy
have a simple solution functions

Bi' () Ai(yr)—Ai"(¢)Bi(yr)
Bi" () —V3AI' ()

R=(1-1)R°, R(r)=R%32°r(2/3)

where the constanR°=R(0) should be defined from the
conditions on the catalytic surface. Thus the mass transpognd
coefficient isq®= —1.

In the case&k#0 andn=0 (which corresponds to Turing Bi'(¢)+V3AI'(¢) (10
instability) Eq. (4) becomes q( B () —V3AL ()
" 2P —
R'=6"R=0, 6) where ¢,s are defined by Eqg7) and(9).
where §=kd~Y2. The solution of Eq(6) that satisfies the
boundary conditiong5) is IV. BIMOLECULAR REACTION
o9 _ gd2-1) A. Stationary states
R(r)= WRO. As a first example, consider a bimolecular surface reac-
€ tion of two species with the reaction rate expressions
Thus, the spectral representation of the transport operator is fr=—x16,, =12,
a(k,00=R’(0)=— ¢ coth 6. and the Langmuir adsorption isotherm
The solution of Eq(4) for k=0 andn#0 satisfying the bjCj*
boundary condition(5) is expressed through Airy functions Hj—m-
R(r)=R%323['(2/3) Bi(y)Ai(yr) —Ai(§)BI(yr) It is convenient to define the concentration so@fe as the
Bi()—V3Ai(¥) ' inverse capacitance factor of théh reagentb;. Then the
surface reaction rate expressions become
where
C1Co
— (i 1/3 fi=— ez
Y= (inZ/d)¥s. (7 ' (1+4ci+cy)

This yields the spectral representation of the transport operd=orc,>c;+1 orc,<c;—1 one of the reactants is autocata-
tor Iytic, so balance equations on the catalytic surface may have
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FIG. 2. Bimolecular reaction: bifurcation curves of stationary
states in the parametric plang,p) for different values ofl. Mul-
tiple stationary states exist within the cusped region.

multiple solutions. The solutions are spatially homogeneous
since the stationary flux does not depend on transverse coor-
dinates. The bifurcation conditions will be determined be-

low. . FIG. 3. Bimolecular reaction: boundaries of the Turing instabil-
Suppose that both reactants are supplied from the OUI% and DIFICI on the lower sheet of bifurcation surface. The Tur-

cylinder, i.e., the Dirichlet boundary conditions apply for j,q instability is observed to the left of the curve 1 and DIFICI to
both species. Consider homogeneous perturbations that leayf right of the curve 2.

the surface homogeneous, i.e., do not depend on angular and

axial coordinatesk=n=0). In this situation transport op- into stable and unstable domains. The sheets are situated
erators for both species are the same @j{0,0)=—1. The  close to each other and have approximately the same quali-
condition for bifurcation of stationary states € 0) is tative picture of the instability domains. Thus we consider
only one of the sheets. In the following, we shall look for
bifurcations with spatial symmetry breaking on the lower
sheet of the bifurcation surface, which is shown in Fig. 3.

detT(0,00=[c(1—c2+cd)dB+cd(1+c%—c))

+dB(1+c2+c9)3pl/p=0, (11

wherec? B. Turing instability

i Ecjs(O) is the stationary concentration pfspecies
at the catalytic surface3=b,/b,, andd=D,/D,. After
straightforward calculations, Eql1) together with Eq.(2)

gives a family of cusped bifurcation loci in thg{(p) plane,

Turing instability is the result of axial perturbations with
k# 0 (without angular perturbations=0). Thus the bound-
ary of the Turing instability domain is defined by

- c? A (0,0)=0, (14
Bleh)=—5—,
14
12 —(0,0=0 (15
) (1+c9+c5—v)?(cs—c?) d(k9) ™ '
p(Cy)= ,
! c(cs—») The condition(14) is identical to the conditiori11) and Eq.
(12) can be considered as an additional condition on the
where parameted. Thus, instead of the independent parameter
o _ 2 N1 one has to substitute the function obtained by solving Eq.
(€)=~ ay*(ai—ao) ™ (15) in Egs.(12),
ay(c)=[—(c})*+cl(1+cf—cj) , (&1+c9)c?
e e 0 e d(C1)=1+ e_ A0 — A0y
—c§(1+2c5)1/2(cd+c9), (13 (ci—c)(é1—cy)

ag(cd)=c5[2(c9)?—clcs+cS(1+cH)1/(cS+cf),

and 0<cl=c$ and d>0 are parameters. The bifurcation
manifold shifts with the changing ratio of diffusion coeffi-
cientsd of the two species, as shown in Fig. 2. Introducthg

as an additional coordinate, we can draw the bifurcation]-he T
manifold as a two-dimensional cusped surface in the para-

metric space d,p,B). The bifurcation surface consists of

where
&1(c))=1+c5—v(c)) (16)

and v(c?) is defined by Eq(13). This defines the boundary
of the Turing instability domain, shown by curve 1 in Fig. 3.
uring instability domain lies to the left of this curve.

C. DIFICI

two sheets joined at the cusp line. The boundaries of Turing
instability and DIFICI domains are represented on both DIFICI results from growth of angular perturbations (
sheets as parametric curves. These curves divide the sheet®). In the continuous limi{valid for a cylinder with the
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circumference much larger than the gap wjdthe boundary dc, 1 dc,
of the DIFICI instability domain is defined by P o Gt Bhcy(cy)?,
A
\(0,0)=0, >-(0,0=0. (17) dc, d dc, 1
d(n th—pWJFHCl—,BCz(Cl)Z,

As in the preceding subsection, the DIFICI domain is ob- R .

tained from Eqs(12) by replacing the parameter by the  whereh=H,/H,, B=pBH?2, and p=pH;.

following function obtained by resolving Eqél7): Suppose that one of the reactants is supplied from the
outer cylinder(Dirichlet boundary condition while there is

no external input of the second offéeumann boundary con-
dition). In this case the transport operators for the two spe-
cies will be different. The stationary homogeneous concen-

1
d(ch) = 5[ =Ky = (KT—4KK0) K5

where tration field (2) is defined by
Ka(c9) = & — éx(é1+ )+ w(1+cD)és cS=1, cS=1/(hg).
+17/355(ci—c)], Consider the situation without perturbations along and
0 0 e 0 around the inner cylinder, that ik=n=0. In this case the
Ki(c)=vés[(1+c7)(1— &)+ E261(Ci—Cy) components of the transport operator ape=—1 for the
_ e_ 0\1_ 0 B externally supplied species agg= 0 for the species without
&s(ci—cp]—2(&1+cp)éx(1—&y), external flux. Thus, in Eq3), we get
Ko(c)=(1-&)[(&-1)(&+cY) NZ—N\2-\, tr T+detT=0,
+ cS—cd)+17/35(ct-cd) &3], (18)
§1§3( 1 1) ( 1 l)§3] )\i(Z)\r—tr T):O,
(ci—c(é1—c)) S+cs—v
() =— — 5, 53(02):%' where
ci(é1+cy) ci(c;—v)

trT=1-8—1/p, detT=g/p.
and v(c9) is defined by Eqs(13) and £,(c9) by Eq. (16).
The boundary of the DIFICI domain is shown by curve 2 inSince defl is strictly positive, the homogeneous mode
Fig. 3. The DIFICI domain lies to the right of this curve. =0 is impossible. The Hopf bifurcation locup,) is de-
Thus, in the domain to the right of Turing curve there is nofined by the condition
Turing instability, but there is the symmetry breaking caused
by DIFICI. 1-p—-1p=0.

V. BRUSSELATOR MODEL
A. Stationary solution and stability

As a second example of a surface reaction consider

version of the Brusselator model. It can be formulated as a

system of two chemical reactions

A14>A2, 2A1+A2*> 3A1,
ki ko

with the following reaction rates defined according to the
mass action law:

RIA601,0,) =% 01(ki—K0,61).
Takingk; as a reaction rate scale we obtain

f1A01,0)== 01(1— B6,6,),

B. Turing instability

In this system both the Turing instability and DIFICI oc-
cur at nonzero values & or n. At n=0 the components of
fhe transport operator arg;(k)=—k cothk and q,(k)
= —k//d tanh{//d); the matrixT is real and we have the
same equations as Eq48). However, now we have

tr T(k)=1— 8- hﬁp[h cothk+ \/d tanh(k/\/d)],

k cothk d k
detT(k)= Bk cothk _ £k tanH —
p hp Jd

+k2\/a thk t }‘( X
—— CO anl —|.
hp Jd

An example of the dependence of the eigenvaluek tea-

where B=k,/k,. Consider the Henry adsorption isotherm turing a marginal Turing instability is shown in Fig. 4. Be-
0;=Hjc; as a relation between the surface coverages andause of the absence of a homogeneous instability, there is
bulk concentrations of both species near the surface. In thiso long-wavelength instability in this case, contrary to the
caseW is the diagonal matrix with element;;=H;. Mul-  first example. Now it is possible to have a short-wavelength
tiplying Eq. (1) by the inverse matrixV ! from the left, we instability, which requires stability fok=0 and instability
obtain for somek=k* #0. The stability conditions fok=0 are
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Ar 0.5
k B =0.5
0.4 d=4.¢
-0.
-0. 0.3
-0. 0.2
_0 Hopf =0.2 d=0.01
0.1
-0. p
-0. (a) 1.2 1.4 1.6 1.8 2
FIC_;. 4. Exgmple qf th_e dep_e_ndence of the eigenvaluex on 1.2fp RZ0.2 505
featuring marginal Turing instability. ’
1.2
AP(0)+ A2 (0)=tr T(0)<0 (19 1
0.8 Hopf
and 0.6 1.0
AP (0)A?(0)=detT(0)>0, (20) 0.4 s
0.2 o
where the condition20) is automatically satisfied because p
detT(0)= B/p is obviously positive. If the conditiofl9) is (0) 1.5 2 2.5 3 3.5 4 4.5

true, "?" trT(0)<0,_ then trT(k)<_O for a_II K becausg FIG. 5. Brusselator model: Turing instability féa) h=0.2 and
tr T(k) is a monotonically decreasing function. The Turing different values ofi and(b) d=4 and different values df. Insta-

instability occurs if for somé&=k* one of eigenvalues be- ity occurs above the Hopf curve. The necessary instability con-
comes equal to zero, that is, dition is h< \/d.

D(* 2) (1% — *) —
MO B (k) =det T(k) =0. @D where condition(26) is always true k* >0).
We should add the condition that!)(k*) is the maximal Equations(24) and (25) for all h< \/d can be rewritten as
value. Differentiating Eqs(18) with respect tok at k=k* & parametric curve in the plane,(8):
we obtain the conditions

. cosi k[ /d sinh(2k/+/d) + 2K]

d —
(ﬁ detT(k)) =0, P( sinh(2k) + vd sinh(2k/\/d)
« (22)
d? _dsintP(k/y/d)[sinh(2k) — 2k]
(Wde”(k))kfo’ A= R cosi K[Jd sini2k/ Ja)+ 2k

where defT (k) can be rewritten as which should be considered f@=>(p—1)/p because of the

condition (23). Turing instability curves foh=0.2 and dif-
detT(k)=Q h_'B cot L —tanhk+ E , ferent values ofl from 0.0{up to 4.0 are shown iq Fig(ab.

Jd Jd Now the necessary conditidm< \d becomes obvious: The

curve withd=0.01 (h=0.2>/d=0.1) always lies under the
whereQ= (\/d/hp)k cothktanh{/+/d) is positive fork#0.  Hopf curve. Consequently, for increasing valueddahe Tur-
For the following calculation® can be omitted. Thus the ing instability occurs for smaller values gf and 8. An

conditions(19), (21), and(22) read analogous picture can be observed &b+ 4 and different
values ofh from 0.2 up to 2.0. Turing instability occurs on
Ca_ E the parts of curves over the Hopf curve. Fee 2 there is no
1-8——<0, (23 e " .
p Turing instability. For a decreasing value bfwe can ob-
serve Turing instability for smaller values pfand g, as it is
hB k* k* shown in Fig. %b).
— coth —=| —tanhk* + — =0, (29
vd o\ Vd P
C. DIFICI
hg 1 1 1 DIFICI is the result of angular perturbation witt+ 0.

=0, (29 Consider pure angular perturbations, i.e., with no axial per-

turbation. The transport operator is defined by & for the
. first species and by Eq10) for the second one. We are
h_éBE costk*/\/d) N sinh k* < (26)  interested in obtaining a situation where instability occurs at
d¥ sinB(k*/yd) ~ cosi k* somen# 0. The stability conditions fon=0 are

" d sinff(k*/ya) CosRK* ' p
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FIG. 7. Brusselator model: DIFICI curve for different values of
0.25 o d.

Here L. ;;5(t) are modified Bessel functions of fractional or-
0.15 der. The results of calculation are shown in Figs. 7 and 8.
The dependence of the DIFICI curve on different valueb of

0.1 is shown in Fig. 7. For smaller values lefinstability occurs
0.05 ® for smaller values o3 andp, while the dependence df is
n quite opposite: Over the specified valuedinstability oc-

1 2 3 4 3 curs for all values ofg and p>1. For example, in casd

‘0-05. ° =6 andh=2, DIFICI is possible fop>1 andB>0, while

Turing instability is possible only fop>p*, where p*
FIG. 6. Example of the dependence of the eigenvaluesion ~26 andg>1.

featuring DIFICI.

VI. CONCLUSION

(1) (2) =
NN = TS0, @7 The Couette flow reactor gives a unigque opportunity to

follow competition among DIFICI, Turing instability, and
Hopf instability on an equiaccessible reaction surface. In
, . i , both examples considered, a bimolecular catalytic reaction
where defl =p/p, i.e, the condition(28) is automatically 5 the Brusselator model, we have obtained conditions for
true. DIFICI may occur when for some® one of the eigen- ot kinds of symmetry-breaking instabilities, DIFICI and
values becomes equal to zero, wiule the real part of the se€ing instability, which fall into different parametric re-
ond one is negative. Thus, for=n gions but may also interact at a higher codimension bifurca-
tion locus.
A clear identification of various mechanisms of spontane-
ous symmetry breaking is possible only in a system possess-
ANONP =detT=0. (30 ing the involved symmetries to begin with, which may be
difficult to realize experimentally. The original setup for DI-
The condition(29) may be excluded because the real part ofr|C| instability [2] was a one-dimensional reactor where
tr T is a monotonically decreasing function of An ex-  translational symmetry was lacking from the outset, due to
ample of the dependence of the eigenvaluea @shown in  the existence of a preferred direction of the reactant supply
Fig. 6. that makes a uniform stationary state impossible for a ge-

The conditions(27) and (30) can be rewritten as a para- neric (realistig reaction system. This restriction also applies
metric curve in the planep(3),

ANOUNP@ =detT>0, (29

AD AP =tr, T<O, (29

EPH(£) s B
P =S G5 ) LB o
1erre e 1 95 DIFICIT
d?B ¢i(€) 1 Hopf
B(S)ZTrl—,
¢2(§) 0.75
whereé=(n¢)¥? is the positive parameter and 0.5
- 0.25
2 (-1 D
-3 3 “'g/dj} 5 10 15 20 25 30 35
Hio= 2 g e FIG. 8. Brusselator model tition between Turing instabil
RN ] . 6. brusselator model: competition between luring instanii-
I'/3[3 Ig/dj} ity and DIFICI forh=2, d=6.
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to the study of competition between the DIFICI in the direc-remain technically involved for rather trivial reasons, such as
tion of flow and a Turing instability in the transverse direc- the necessity to solve cumbersome algebraic equations that
tion by Ponce Dawsoet al. [6]. possess multiple stationary states. In order to simplify alge-
In the Couette flow reactor with diffusional supply of re- pra, full analysis has been carried out above for the artificial
actants analyzed in this paper, the symmetry of a unifornBrusselator system, while for a more realistic bimolecular
state may be broken by either DIFICI in the azimuthal orsystem the existence of symmetry-breaking bifurcation was
Turing |nStab|l|ty in the axial direction. DIFICI is caused in proved on the saddle-node bifurcation manifold. A|though
this configuration by a disparity of adsorption rates of differ-the wavelength of the bifurcating pattern is infinite on the
ent reactants and is due essentially to a chromatographic eftersection of the DIFICI or Turing instability and saddle-
fect. A more convenient way to supply reactants might benode bifurcation manifolds depicted in Fig. 3, the existence
through axial flow. This, however, would break the symme-of hroken-symmetry states with a large but finite wavelength
try along the axis. DIFICI in the azimuthal direction would in the vicinity of this intersection follows by continuity. This
St|" be pOSSible in th|S Conﬁguration, but the State Of brokeqs Supported by pre"minary results of our numerical Compu_
symmetry would then branch off a spatially nonuniform ba-tations. The numerics is greatly facilitated by dimensional
sic state and DIFICI may be observed only in a part of thereduction with the help of a nonlocal operator. The compu-

reactor. _ _ ~tation of finite amplitude patterns based using the approach
We have given above a general recipe for the analysis ofill be described elsewhere.

a surface reaction fed by diffusion and laminar advection.

The procedure effectively separates the linear part of the
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